If it's not what You are looking for type in the equation solver your own equation and let us solve it.
432=3n^2
We move all terms to the left:
432-(3n^2)=0
a = -3; b = 0; c = +432;
Δ = b2-4ac
Δ = 02-4·(-3)·432
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*-3}=\frac{-72}{-6} =+12 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*-3}=\frac{72}{-6} =-12 $
| 5n-11=-16+ | | 2x+20°=3x-10° | | 55x19=-5x-41 | | m^2+6m+8=0 | | 10x^2-15-60=0 | | 0,25x+300=174,95 | | 4t–4=48 | | 4c-3(c=-2) | | 6-x+3(1-x)=7-2x | | 15=5(y-7)= | | 13-1=16x | | 1.6x=7.68 | | -x/5+2=13 | | 10(b-3)=50 | | 8.7r-1.9r=116.96 | | 59+81q=68 | | -4=4x+7 | | -5(-5+4a)=-3a-23-5a | | 3-(4+3x)=3+2(3x-7)-4x | | 7(2a+9)=91 | | 6c-24=12 | | 0.023x+4=0.031x | | 4x−17=3x+2 | | 9u-1=-10 | | 0.023x+4=0.031x+0 | | 2(6y-8)=32 | | 6x-3(-1)=15 | | 10(2x-8)-2=10(x-7)+(8) | | 14+65b=245b | | 18-(2g)=4g | | 2x+25=7x+50 | | 1.2b+2.6=10.6-1.3b |